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Abstract

Soil phosphorus (P) fractions and runoff P concentration were measured to understand the

fate of soil P entering surface runoff water during summer cropping season of different dou-

ble cropping systems under two fertilizer regimes. The dominant form of runoff P was partic-

ulate P (PP). Runoff total P (TP) was higher at the vegetative growth stage and lower at the

crop reproductive stage. TP and PP were derived mainly from soil Olsen-P, Al-P and Fe-P

and amounts increased with sediment content in runoff water. Runoff P discharge was

closely related to the changes in soil P forms. Soil Olsen-P, mainly consisting of some

Ca2-P and Al-P, was increased by elevating fertilizer rate. Along with crop growth, there

were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in the soil, and some

available P converted into Ca10-P, with O-Fe-P possibly being a transitional form for this

conversion. The oilseed rape/corn system had less runoff TP at the early stage, and wheat/

sweet potato system had a lower runoff P at the late stage. Intercropping corn with sweet

potato in the field with oilseed rape as a previous crop may be helpful for alleviating runoff P

load during the summer in this region.

Introduction

Phosphorus (P) enrichment has been recognized as the most critical stimulator to water eutro-

phication [1–3], and agriculture is considered a major source of P contamination in surface

waters worldwide [4]. Where P is applied at rates exceeding crop uptake, it may built up in the

soil and discharge into waterways through runoff during rainfalls [1, 5]. The identification of

soil status that likely generates high runoff P concentrations is critical for developing rational P

management strategies in agricultural systems [3]. Attempts have been made using agronomic

soil test P (STP) to predict runoff P but the success is limited [6, 7]. They suggested that a
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measure of P buffering (PBI) may complement agronomic soil tests to improve the prediction

[8, 9]. Dougherty et al. showed that either DGT (diffuse gradients in thin films) or Colwell P

and PBI can be used to predict runoff P from six soils with a diverse range of soil P buffering

properties and a wide range of P additions in repacked trays grown with pasture under simu-

lated rainfall [3]. However, P concentration and forms in runoff usually vary considerably

depending on soil properties, land use and management, fertilizer application, runoff delivery

pathway, and other site-specific factors [9, 10], and the relationships between soil P and runoff

P needs further study.

Phosphorus in soils exists in many complex chemical forms that differ markedly in their

behavior, mobility, and resistance to bioavailability in the soils [11]. Therefore, the fate and

transport of soil P vary largely depending on the forms [12]. Soil Olsen-P is considered avail-

able to plant [13–15] and therefore widely used to estimate soil P availability [16]; nevertheless,

its association with P loss from runoff has not been clarified due to its varying components in

different soils. Fractionation of soil P is not only an effective approach for investigating soil P

availability and transformation [16, 17], but also can provide useful information for assessing

the risk of soil P as the potential sources of eutrophication in aquatic systems [11]. However, it

is very hard to identify individual compounds of soil P due to its complex chemistry [18]. The

method to divide soil inorganic P (Pi) into various fractions was first developed by Chang and

Jackson [13]. Further work on this method has led to a sequential Pi fractionation approach

that has been widely used to divide soil Pi into L-P (NH4C1-extractable labile P), Al-P (NH4F-

extractable Al phosphates), Fe-P (NaOH-extractable Fe phosphates), O-P (P occluded within

oxides extracted with sodium citrate-Na2S2O4 solution) and Ca-P (H2SO4-extractable Ca

phosphates) in acid and neutral soils [19]. However, the complex O-P should be sub-

fractionated. In calcareous soils, the majority of Pi exists in various Ca-bound forms with dif-

ferent bioavailability to crops. A procedure was then developed for calcareous soil, which frac-

tionates Ca-P into sub-fractions as Ca2-P [CaHPO4�nH2O], Ca8-P [Ca8H2(PO4)6�nH2O] and

Ca10-P [Ca10(PO4)6�(OH)2] based on their availability and solubility [15, 20]. A complete P

fractionation should also include organic P (Org-P) in soil. Because Ca-P fraction in non-

calcareous soils is rather small [21], Lei et al. proposed a modified scheme, based on

previous work, to fractionate soil P as Ca2-P, Al-P, Org-P, Fe-P, O-Al-P, O-Fe-P and Ca10-P

[19]. Comparison studies indicated that the new scheme is applicable for acid and neutral

soils, with higher P extraction rates than the methods of Chang and Jackson [13] and Gu and

Jiang [20].

The response and availability of different soil P fractions to fertilizer application, crop types

and rotation patterns has been studied in Northern China [17, 20] and Western Australia [22].

However, little is known about the transformation of soil P fractions under such agronomic

practices and their association with P loss from farmlands. In this study, we have determined

the differences in soil P fractions and runoff P concentration from various cropping systems

over summer in a continuous double cropping experiment with different fertilizer regimes,

which was conducted in Danjiangkou Reservoir region, Hubei Province, China. The major

objective of this study was to establish a relationship between soil P fractions and runoff P loss

for predicting P discharge from different cropping systems and clarify the transformation of

soil P fractions in response to fertilizer application, crop types and rotation patterns.

Materials and methods

Ethics statement

The field experiment of our study did not involve any endangered or protected species and no

specific permissions were required for our cropping experiments.

Soil P fractions that are associated with P loss from surface runoff
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Site description

A continuous double cropping experiment was conducted at Xijiadian (32˚45’50”N,

111˚9’42”E), Danjiangkou City, Hubei Province. The experimental site was about 5 km from

Danjiangkou Reservoir that is the second largest artificial freshwater lake in Asia and also the

headwater of the middle route of the South-to-North Water Transfer Project of China. From

there, the water is transferred to major populous areas in northern China such as Beijing and

Tianjin for drinking water. However, the water tends to be eutrophic with increasing total N

and P concentrations in the reservoir [23] and the nutrient contamination has mainly come

from soil erosion and agricultural activities [24]. The catchments surrounding the reservoir

are typically rain-fed hilly farming regions and most dry fields are small (< 0.1 ha). Due to the

shallow (< 20 cm in most slopping farmlands) and heavy-textured and poorly drained topsoil,

the farmland is subject to severe soil erosion and high nutrient loss in the rainy seasons [25].

The surface runoff over the summer crop season accounted for over 70% of the total runoff

of the entire cropping season [25]. The major crops grown on sloped upland are corn (Zea
mays L.), sweet potato (Ipomoea batatas Lam.), winter wheat (Triticum aestivum L.) and oil-

seed rape (Brassica napus L.) with the major conventional double cropping systems as wheat

and corn (wheat/corn), wheat and sweet potato (wheat/sweet potato) and oilseed rape and

corn (rape/corn).

The climate is typical in the semi-humid northern subtropical zone, with average annual

mean temperature of 15.9˚C, average monthly mean temperature of 3.1˚C (January) - 31.9˚C

(August) and frost-free period of 180–250 days. The long-term average annual precipitation is

834 mm with most of the rain falling in July to September.

The plot experiment was set up on a typically sloped farmland with a slope of 9.9˚ from

October 2008 to October 2011. Sesame (Sesamum indicum L.) was grown without fertilizer

application in the season prior to the experiment to control weeds and ensure the area was uni-

form for the experiment. The basic fertility and P fractions of the yellow brown clay were

determined as described by Bao [26] and Lei et al. [19], respectively, after sesame harvest

and before the commencement of the experiment. There were 5.17 g/kg of organic matter,

0.40 g/kg of total N, 9.54 g/kg of total K, 0.35 g/kg of total P, 33.87 mg/kg of alkali-hydrolysable

N, 114.86 mg/kg of available K, 6.35 mg/kg of Olsen-P, 12.15 mg/kg of Ca2-P, 12.86 mg/kg of

Al-P, 83.96 mg/kg of Fe-P, 19.71 mg/kg of O-Al-P, 197.21 mg/kg of Ca10-P and 12.96 mg/kg of

Org-P in the soil. The pH and CaCO3 content of the soil was 6.97 and 3.5%, respectively.

Experimental design and treatments

A factorial experiment with 6 treatments was arranged in a randomized complete block design

(RCB) with 3 replicates. There were 3 continuous double cropping systems including winter

oilseed rape/corn, wheat/corn and wheat/sweet potato under 2 fertilizer rates, i.e. a lower rate

that was commonly used by farmers in the region, and a higher rate that mimicked potential

fertilizer use in the future. The 3 cropping systems were combined with 2 fertilizer rates to

form 6 factorial treatments: (1) rape/corn + lower fertilizer rate (RCL); (2) rape/corn + higher

fertilizer rate (RCH); (3) wheat/corn + lower fertilizer rate (WCL); (4) wheat/corn + higher fer-

tilizer rate (WCH); (5) wheat/sweet potato + lower fertilizer rate (WPL); (6) wheat/ sweet

potato + higher fertilizer rate (WPH).

Experimental infrastructure

There were 18 plots in total constructed in 3 rows in the field, each with 7.2 m in length, and

3.2 m in width (plot size = 23.0 m2). A concrete barrier about 15 cm wide was inserted 35 cm

into bedrock and 25 cm above ground between individual plots to prevent lateral flow. A
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waterproof cement catchment grooves, which was at the same level as the topsoil on the top

and 2 cm deep, was installed across the lower edge of each plot. One end of the catchment

grooves was channeled to a water tank that had a total volume of 1 m3 and was covered to pre-

vent rainfall entry and evaporation. A 55 L plastic bucket was placed in the tank to collect run-

off water and sediment. The infrastructure was set up in the summer of 2008 and artificially

adjusted soil slope of the plots after completion of construction.

Crop establishment and harvest

All crops including winter crops were grown using the local conventional methods along the

contour in plots. Oilseed rape (cv. Huaza 62) was sown with row spacing of 30 cm in the first

ten days of October, and thinned out into 20 cm between plants at 5 leaf stage. Winter wheat

(cv. Yumai 9203) was sown with row spacing of 25 cm in the second ten days of October. Corn

(cv. Yanyu 18) was sown with row spacing of 60 cm in the last ten days of May to the first ten

days of June, and thinned out into 30 cm between plants in a row at 4–5 leaf stage. Sweet

potato (a local genotype) was transplanted in furrow-ridge tillage with a width of 40 cm (ridge

height = 30 cm and furrow width = 30 cm). The distance between transplants was 30 cm on

each ridge and the transplanting was undertaken in the last ten days of May up to mid June

depending on rainfall. Oilseed rape and winter wheat was harvested in the middle and last ten

days of May, respectively. Corn was harvested in the period from the end of September to the

tenth of October, and sweet potato in the second ten days of October.

Fertilizer application

The fertilizer applied for summer crops included 120.8 kg N/ha, 19.6 kg P/ha and 52.3 kg K/ha

for the lower rate, and 169.1 kg N/ha, 27.5 kg P/ha and 73.2 kg K/ha for the higher rate; while,

those for winter crops were 138.0 kg N/ha, 19.6 kg P/ha and 56.0 kg K/ha for the lower rate,

and 193.5 kg N/ha, 27.5 kg P/ha and 78.4 kg K/ha for the higher rate. All phosphorus and

potassium fertilizers were applied as base fertilizer prior to sowing both winter and summer

crops. N fertilizer was split into 43% base fertilizer and 57% topdressing fertilizer for summer

crops, and 64% base fertilizer and 36% topdressing fertilizer for winter crops. Topdressing N

fertilizer was applied after thinning in late June for corn and 7 days after transplanting for

sweet potato in summer crop season. In winter crop season, topdressing N fertilizer was

applied at 5-leaf stage (12%) and bolting stage (24%) for oilseed rape and jointing stage for

winter wheat. The fertilizers used in this study were urea (46% N), calcium superphosphate

(12% P2O5) and potassium chloride (59% K2O). The rest of the management was based on the

local conventional standard of field production.

Data collection

In the present study, we focused on the summer cropping season in the fourth year (2011) of

the experiment with high surface runoff in the entire cropping season and stabilized and uni-

formed soils under different treatments in plots. The amount of runoff water/sediment was

recorded after rainfall events on 27 July and 23 August 2011, at the vegetative growth and

reproductive stage of crops, respectively. All water samples were taken to the laboratory in ice-

boxes for determining the concentrations of sediment, total phosphorus (TP), particulate

phosphorus (PP), total dissolved phosphorus (TDP), and dissolved inorganic P (DIP) in run-

off. Three 4.8 cm diameter cores were taken to a depth of 20 cm from each plot and bulked to

determine the concentration of Olsen-P, Org-P, Ca2-P, Al-P, Fe-P, O-Al-P, O-Fe-P and Ca10-

P. Crop leaf area index (LAI) was measured at 3 random locations within a plot, using Accu-

PAR LP-80 (DECAGON DEVICES, INC.) at the vegetative growth (23 July) and reproductive
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stage (24 August), respectively. Crop economic organs (grain for corn and root tuber for sweet

potato) and straw including corncob were sampled and oven-dried at 80˚C to determine the

dry yields and P contents after harvest.

Measurement

Samples of runoff water were analyzed using the method of SEPA [27]. After the water was

thoroughly mixed, a volume of 100 mL was sampled and then oven-dried at 105˚C to deter-

mine sediment concentration. Phosphorus concentration in water was detected by molybde-

num-antimony-ascorbic method [28]. Prior to determination, a blended water sample was

digested with alkaline potassium persulfate under 120˚C for 40 min for TP determination. The

water sample after filtering through 0.45 μm pore diameter membrane was used to determine

DIP. The filtered sample after being digested with alkaline potassium persulfate was used to

determine TDP. The PP concentration was calculated by subtracting the TDP from TP; and

the DOP (dissolved organic P) by subtracting the sum of DIP from TDP [29].

The dried plant samples were ground into fine powder and then digested with concentrated

H2SO4 (98%, v/v) and HClO4 (70%, v/v) for determining the P content. Soil samples were air-

dried and ground to pass a 150-μm mesh prior to analysis. Olsen-P was determined by the

method of Olsen et al. [30]. Soil P fractionation was carried out using the sequential scheme of

Lei et al. [19]. Phosphorus concentration in the digestion solutions of plant samples and in dif-

ferent extracts of the soils was determined by colourimetry [28].

Statistical analysis

Data on the runoff amount, sediment and P concentrations, and the contents of soil Olsen-P

and P fractions and crop LAI and P uptake of all treatments were analyzed using 2-way analy-

sis of variance (ANOVA) with cropping systems in combination with different fertilizer rates

as random factor and blocks (replicates) as fixed factor in a generalized linear model. Duncan’s

multiple comparison test was subsequently used to determine significance of differences

between treatments at P = 0.05. Pearson correlation and linear regression analysis was per-

formed between Olsen-P and different P fractions in soil, and runoff TP and PP and soil

Olsen-P and P fractions. All data analyses were performed using SPSS 17.0 (SPSS Inc., 2002).

Results

Crop leaf area index, yield and phosphorus uptake

There were significant (P< 0.01) differences among different cropping systems in crop leaf

area index (LAI) at vegetative growth and reproductive stages, economic yield and P uptake,

but not in straw yield of summer crops (Fig 1). The LAI in wheat/sweet potato system under 2

fertilizer rates was lowest at the vegetative stage but highest at the reproductive stage. Elevating

fertilizer rate tended to increase LAI but no significant difference detected between fertilizer

application rates in the same cropping pattern (Fig 1a). The economic yield was highest for

WPH in dry root tuber of sweet potato but lowest for WCL in dry corn grain. Elevating fertil-

izer rate increased economic yield in wheat/sweet potato. Corn yield was higher in rape/corn

than in wheat/corn under 2 fertilizer rates (Fig 1b). More P was taken by summer crops in

wheat/sweet potato with an increased P absorption rate of more than 129% than in other crop-

ping systems. However, no significant differences were detected between fertilizer rates in

same cropping patterns (Fig 1c).

Soil P fractions that are associated with P loss from surface runoff
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Fig 1. Crop leaf area index (LAI), yield and P uptake of summer crops in different cropping systems in

the fourth year (2011). Data are means ± SE. Different letters in lower case above SE bars indicate

significant differences between cropping systems at P < 0.05 at same stage. a: Leaf area index (LAI); b: Crop

economic and straw yield; c: Crop P uptake. RCL: rape/corn + lower fertilizer rate; RCH: rape/corn + higher

fertilizer rate; WCL: wheat/corn + lower fertilizer rate; WCH: wheat/corn + higher fertilizer rate; WPL: wheat/

sweet potato + lower fertilizer rate; WPH: wheat/ sweet potato + higher fertilizer rate.

https://doi.org/10.1371/journal.pone.0179275.g001
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Runoff yield and sediment concentration

There was no significant difference in runoff yield among different cropping systems when

measured at the vegetative stage with a rainfall of 24 mm. However, significant difference was

detected in the sediment content of runoff, which was the highest for WCL but lowest for

WPH (Table 1). Increasing fertilizer rate led to lower sediment content in all cropping patterns

(Table 1). Contrasted to the vegetative stage, there was no significant difference in sediment

content at reproductive stage when 18 mm of rainfall was received, while, significant difference

in runoff yield was detected among cropping systems (Table 1). The runoff yield was highest

for WPH, but lowest for RCL and RCH (Table 1).

Phosphorus concentrations in runoff

Runoff P load varied substantially from different cropping systems. Significant (P < 0.05)

differences were detected in the concentrations of runoff TP and DIP at the vegetative

growth, PP at the reproductive stage, and TDP and DOP at both stages (Fig 2). Both TP and

PP concentrations were higher at vegetative stage than at the reproductive stage in all crop-

ping systems and PP accounted for most proportion of TP in the runoff (Fig 2a and 2c). The

highest TP concentration was found in WCL, and highest TDP and DOP in RCH, but the

lowest TP and TDP were found in RCL and lowest DOP in WCL, at the vegetative stage

(Fig 2a, 2b and 2e). Runoff DIP concentration was rather small compared to other P forms.

The higher DIP concentrations were found in WPL and WCL, but lower in RCL and WCH

(Fig 2d). No differences were detected in PP among different cropping systems, although

wheat/corn tended to have a higher PP under both higher and lower fertilizer application

rates at the vegetative stage (Fig 2c). Increasing fertilizer rate led to increased TDP only in

oilseed rape/corn and DOP both in oilseed rape/corn and wheat/corn, at the vegetative

growth stage (Fig 2).

At the reproductive stage, there were no differences in runoff TP and DIP concentrations

among cropping systems (Fig 2a and 2d). Runoff TDP and DOP were the highest in RCH, but

lowest in WCH and WPH (Fig 2b and 2e). The WCH had a higher PP concentration than

other systems (Fig 2c). Elevating fertilizer only increased PP concentration in wheat/corn

(Fig 2c), however, resulted in lower TDP and DOP in wheat/corn (Fig 2b and 2e), at the repro-

ductive stage.

Table 1. Runoff yield and sediment content in summer crop season in the fourth year (2011) of different cropping systems.

Treatment Vegetative growth stage Reproductive growth stage

Runoff yield (mm) Sediment content (g/L) Runoff yield (mm) Sediment content (g/L)

RCL 0.9±0.2 a 3.7±0.6 b 0.1±0.0 c 0.5±0.0 a

RCH 0.9±0.1 a 1.1±0.4 c 0.1±0.0 c 0.4±0.2 a

WCL 1.0±0.2 a 6.8±0.2 a 0.4±0.1 ab 0.3±0.0 a

WCH 1.1±0.2 a 2.8±0.3 b 0.3±0.0 b 0.4±0.0 a

WPL 0.8±0.2 a 3.2±0.1 b 0.3±0.1 b 0.3±0.0 a

WPH 1.0±0.2 a 0.6±0.1 c 0.5±0.1 a 0.4±0.1 a

F5, 12 0.3814 16.734 8.306 0.221

P 0.852 <0.001 0.001 0.947

Data are Means ± SE. Means in a column followed by the same letter are not significantly different (α = 0.05) according to the Duncan’s Multiple

Comparison test. ANOVA results are given in the lines F (F-value, numbers indicate the degrees of freedom) and P (level of significance).

https://doi.org/10.1371/journal.pone.0179275.t001
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Soil Olsen-P and P fractions

The contents of soil Olsen-P, Ca2-P and Al-P were relatively higher at the vegetative stage than

at reproductive stage for all cropping systems. This was the case for Org-P, Fe-P, O-Al-P and

O-Fe-P in most cropping systems. However, Ca10-P content increased to different degrees at

the reproductive stage compared to vegetative stage in all cropping systems (Fig 3). No differ-

ence was detected in the content of soil Ca2-P and Fe-P (Fig 3c and 3e) at the vegetative stage,

Fig 2. Concentrations of runoff P forms in different cropping systems at vegetative growth and reproductive stage of

summer crops in the fourth year (2011). Data are means ± SE. Different letters in lower case above SE bars indicate significant

differences between cropping systems at P < 0.05 at same stage. a: TP (total P); b: TDP (total dissolved P); c: PP (particulate P); d:

DIP (dissolved inorganic P); e: DOP (dissolved organic P). RCL: rape/corn + lower fertilizer rate; RCH: rape/corn + higher fertilizer

rate; WCL: wheat/corn + lower fertilizer rate; WCH: wheat/corn + higher fertilizer rate; WPL: wheat/sweet potato + lower fertilizer rate;

WPH: wheat/ sweet potato + higher fertilizer rate.

https://doi.org/10.1371/journal.pone.0179275.g002
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and Org-P, O-Al-P and Ca10-P (Fig 3b, 3f and 3h) at both stages among cropping systems. At

the vegetative stage, there was a trend for soil Olsen-P content as: WCH > RCH >

WPH > WPL> WCL > RCL (Fig 3a); for Al-P as: WCH > WPL> RCH > WCL >

WPH > RCL (Fig 3d); and for O-Fe-P as: WPH > RCL> RCH > WCL > WCH> WPL

(Fig 3g). Elevating fertilizer rate led to increases of soil Olsen-P in oilseed rape/corn and

wheat/corn patterns (Fig 3a), Al-P in oilseed rape/corn and O-Fe-P in wheat/sweet potato

(Fig 3g) at the vegetative stage.

At the reproductive stage, there was a trend for soil Olsen-P as: WPH > WCH>

WPL> RCH > RCL> WCL (Fig 3a); for Ca2-P as: WCH > WPH > WPL> RCH >

WCL > RCL (Fig 3c); and for O-Fe-P as: WPL > RCL> WPH > RCH > WCL > WCH

(Fig 3g). Soil Al-P content was significantly higher for WCH than for other cropping

systems (Fig 3d). Soil Fe-P content was significantly lower for WCL than for other cropping

systems (Fig 3e). Elevating fertilizer rate increased soil Olsen-P in all cropping systems

(Fig 3a), Ca2-P in oilseed rape/corn and wheat/corn (Fig 3b), Al-P and Fe-P in wheat/corn

(Fig 3d and 3e).

Relationship of soil Olsen-P, Ca10-P and runoff P with soil P fractions

Table 2 shows that soil Olsen-P was significantly positively correlated with Org-P, Ca2-P, Al-P,

Fe-P and O-Al-P but negatively with Ca10-P. Contrasted to Olsen-P, soil Ca10-P was signifi-

cantly negatively correlated with Ca2-P, Al-P, Fe-P and O-Al-P (Table 2).

Regression analysis revealed that both runoff TP and PP were positively (P< 0.05 or 0.01)

associated with soil Olsen-P (R2 = 0.46 for TP and 0.50 for PP), Al-P (R2 = 0.49 for TP and

0.54 for PP) and Fe-P (R2 = 0.44 for both TP and PP), but negatively (P< 0.01) with Ca10-P

(R2 = 0.71 for TP and 0.73 for PP) (Fig 4).

Discussion

The relative importance of surface and subsurface flows for pollutant transport has been stud-

ied at plot scale [31, 32] and the surface flow identified as an important factor leading to soil P

loss from sloped farmland into waterways [2, 33]. The dominant P form in the runoff water

was PP in this study, which is in agreement with the previous findings in a simulated rainfall

experiment [34]. The P load in surface flows is mainly derived from desorption in surface soils

[35, 36] and P loss of overland flow was mainly through soil transport [37]. The primary form

of dissolved P was organic P, although it contributed only small amount to runoff TP in this

study. This may be attributed to the higher mobility of organic P due to lower fixation by soil

inorganic minerals compared to inorganic P [38]. Leytem et al. [39] and Pagliari and Laboski

[40] also reported that the mobility of soil P can be increased by manure application. Phospho-

rus loss via surface runoff varies spatially and temporarily depending on the magnitude and

intensity of rainfall and site specificities such as vegetation and soil materials [41]. The concen-

trations of TP and PP as well as sediment in the runoff water were much smaller at the repro-

ductive stage than at vegetative growth in all cropping systems of this study. This is partially

ascribed to the higher quantity and intensity of rainfall that was received at the vegetative

stage. TP and PP concentrations are also related to crop growth. Plant coverage became greater

as shown in LAI measurement at the reproductive stage, which could reduce the kinetic energy

of raindrops so as to prevent surface soil erosion [42]. The growth of root systems may also

have played an important role in the control of P runoff loss, because they could contribute to

soil compaction [43, 44], and soil structural stability [45], therefore, increase the soil infiltra-

tion capacity [46]. McDowell et al. [7] and Shigaki et al. [47] also showed that applied fertilizer

P is likely released during the initial storms.

Soil P fractions that are associated with P loss from surface runoff

PLOS ONE | https://doi.org/10.1371/journal.pone.0179275 June 26, 2017 9 / 16

https://doi.org/10.1371/journal.pone.0179275


Fig 3. Soil Olsen-P and P fractions in different cropping systems at vegetative growth and reproductive stage of

summer crops in the fourth year (2011). Data are means ± SE. Different letters in lower case above SE bars indicate

significant differences between cropping systems at P < 0.05 at same stage. a: Olsen-P; b: Org-P; c: Ca2-P; d: Al-P; e: Fe-P; f:

O-Al-P; g: O-Fe-P; h: Ca10-P. RCL: rape/corn + lower fertilizer rate; RCH: rape/corn + higher fertilizer rate; WCL: wheat/corn

+ lower fertilizer rate; WCH: wheat/corn + higher fertilizer rate; WPL: wheat/sweet potato + lower fertilizer rate; WPH: wheat/

sweet potato + higher fertilizer rate.

https://doi.org/10.1371/journal.pone.0179275.g003

Soil P fractions that are associated with P loss from surface runoff

PLOS ONE | https://doi.org/10.1371/journal.pone.0179275 June 26, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0179275.g003
https://doi.org/10.1371/journal.pone.0179275


Numerous studies have shown that runoff P concentration is highly related to soil P status

and P application [5, 6, 8, 48]. When P is applied to soil, it undergoes a complex interconver-

sion among different forms or fractions through chemical, physical and biological processes

[17, 38]. In general inorganic P (Pi) dominates the soil P pools with different fractions [17, 38].

In this study, soil Pi presented mainly in Ca10-P. Higher fertilizer rate tended to increase

Olsen-P as well as Ca2-P in all cases and Al-P, Fe-P, O-Al-P and Org-P in most cases, com-

pared to the lower fertilizer application rate. From the vegetative growth to reproductive stage,

there was a consistent decrease in soil Olsen-P, Ca2-P and Al-P but an increase in Ca10-P. Nev-

ertheless, Fe-P, O-Al-P and O-Fe-P decreased only by relatively smaller amounts or even

increased in some cases. From this and together with the correlation analysis, it was concluded

that Olsen-P was mainly from Ca2-P and partially from Al-P and there were active intercon-

versions among Olsen-P, Org-P, Fe-P and O-Al-P, and some Olsen-P was converted into

Ca10-P along with crop growth. Apart from the effects of crop growth and P uptake, Ca10-P

formation contributes to reduced P load in runoff flow because of its immobility; however,

this may result in low soil P available to plant [49]. Meanwhile, Olsen-P had little correlation

with O-Fe-P, which implies that O-Fe-P may be a major transitional form of available P to

Ca10-P.

Our study showed that runoff TP and PP were derived mainly from Olsen-P, Al-P and Fe-P

in the soil. Yu et al. indicated that Ca2-P showed the largest availability to plant followed by Al-

P and Fe-P in different soil Pi fractions [50]. This indicated that the availability of soil Pi frac-

tions also contributes to P runoff loss. However, Ca2-P, Org-P and O-Al-P were insignificantly

related to runoff P loss, although they could convert to Olsen-P. Soil Ca2-P is the Pi fraction

preferred by crops [50], which might explain why it is not closely related to P concentration in

runoff water. While Org-P content was relatively lower and accounted only for a small propor-

tion in soil P pool in this study, O-Al-P was less mobile compared to other available Pi frac-

tions. In this regard, O-Al-P formation may be conducive to reducing runoff P discharge while

supplying P to crops [49].

In this study, higher fertilizer rate did not significantly increase the runoff TP in cropping

systems. Phosphorus was applied as basal fertilizer, and the nutrients in the fertilizer applied

not only included P but N and K. These might have stimulated plant growth with relatively

more P uptake, leading to less loss of the nutrient as crops grew. Runoff increased and TP con-

centration tended to decrease at the reproductive stage under the higher fertilizer rate for

wheat/sweet potato, compared to the other cropping systems. In addition to the dilution of P

by more runoff water, this was also related to the characteristics of the creeping growth behav-

ior of sweet potato. When sweet potato branches, the ground coverage increases rapidly, the

progress of which is enhanced by higher fertilizer rate. This may have reduced infiltration

velocity of rain water [51], leading to more surface runoff and decrease in PP due to the filter-

ing effects as vegetation coverage increases [52]. Runoff TP was lower in oilseed rape/corn

than in wheat/corn at the vegetative stage, probably due to more P removed from the soil

Table 2. Correlation coefficients between soil Olsen-P and Ca10-P and other P fractions in summer crop season of different cropping systems.

Olsen-P Org-P Ca2-P Al-P Fe-P O-Al-P O-Fe-P Ca10-P

Olsen-P 1.000 0.639* 0.929** 0.851** 0.908** 0.877** 0.239 -0.730**

Ca10-P -0.730** -0.364 -0.664* -0.764** -0.732** -0.716** -0.400 1.000

* and ** indicate significance at P < 0.05 or 0.01, respectively.

https://doi.org/10.1371/journal.pone.0179275.t002
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Fig 4. Linear regression of runoff TP and PP with soil Olsen-P and P fractions. a: runoff TP with soil

Olsen-P; b: runoff PP with soil Olsen-P; c: runoff TP with soil Al-P; d: runoff PP with soil Al-P; e: runoff TP with

soil Fe-P; f: runoff PP with soil Fe-P; g: runoff TP with soil Ca10-P; h: runoff PP with soil Ca10-P. * and **
indicate significance at P<0.05 and 0.01, respectively.

https://doi.org/10.1371/journal.pone.0179275.g004
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through higher corn yield in the oilseed rape/corn pattern. In this regard, intercropping

corn with sweet potato in the field with oilseed rape as a previous crop may be helpful for

alleviating runoff P load during the summer in this region. In oilseed rape/corn, however, run-

off DOP was relatively higher under the higher fertilizer rate than in other cropping systems

for both vegetative and reproductive stages. The possible reason was that oilseed rape is a

deciduous species from which almost all leaves fall before harvest, and those leaves may have

increased the organic matter in soil, particularly under the higher fertilizer rate. However,

DOP generally contributed only a small part to TP in this study; therefore, the effect of

DOP runoff from different cropping systems needs further investigation. Moreover, the linear

regressions of runoff TP and PP with soil Olsen-P, Al-P and Fe-P fractions showed relatively

smaller R2 values in this study, although all regression analyses are significant. This may

be attributed to the methods used to measure P in soils and runoff water in this study. Do

Nascimento et al. [53] recently reported that digestion and colorimetric methods may affect

the precise determination of TP and organic P in samples and suggested using ICP-OES to

measure the undigested extracts in sequentially fractionated soil. In addition, we only investi-

gated soil P status and runoff P at two representative stages over the summer in this study. Fur-

ther studies using improved methodology are needed to understand the relationship between

the changes in soil P fractions and their effects on P runoff throughout the entire growing

season.

Sharpley et al. reported that runoff water is considered as degraded if its total P exceeds a

guideline concentration of 0.10 mg P/L [4]. Total P concentration in the runoff water varied in

different cropping systems but was far beyond this threshold both at the vegetative and repro-

ductive stages of the summer crops in this study. Therefore, controlling P runoff from farm-

land is urgently required to protect the water quality of Danjiangkou Reservoir. Our study was

only performed at a plot scale and a field-scale study is needed.

Conclusion

There were differences in runoff P loss in the summer crop season under different cropping

systems and fertilizer rates. Runoff TP concentration was relatively higher at the vegetative

stage but decreased at the reproductive stage for all cropping systems. Particulate P was the

major form in runoff. Higher runoff sediment yields resulted in higher runoff TP and PP. Run-

off TP and PP were mainly derived from soil Olsen-P, Al-P and Fe-P. Soil Olsen-P that was

mainly consisted of some Ca2-P and Al-P was increased by elevating fertilizer rate. Along with

crop growth, there were active interconversions among Olsen-P, Org-P, Fe-P and O-Al-P in

the soil, and some available P changed to Ca10-P, with O-Fe-P as a transitional form. Runoff

TP was lower at the early stage in oilseed rape/corn and at the late stage in wheat/sweet potato.

Intercropping corn with sweet potato following oilseed rape may help reduce runoff P load

during the summer in this region.
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(XLS)

S4 File. Original soil Olsen-P and P fractions content data. RCL: rape/corn + lower fertilizer

rate; RCH: rape/corn + higher fertilizer rate; WCL: wheat/corn + lower fertilizer rate; WCH:

wheat/corn + higher fertilizer rate; WPL: wheat/sweet potato + lower fertilizer rate; WPH:

wheat/ sweet potato + higher fertilizer rate.

(XLS)

Acknowledgments

This work was supported by the National Key Research and Development Program of China

(Grant No. SQ2017YFNC060063) and Research and Demonstration on Agro-Ecological Res-

toration Technology in Danjiangkou Reservoir Region for the South-to-North Water Transfer

Project (Grant No. 2007BAD87B09). The authors thank Mr. Andy Bruere, the Bay of Plenty

Regional Council, New Zealand, for his helpful comments on the language/grammar of the

manuscript.

Author Contributions

Conceptualization: TY DZ ZN.

Data curation: BW XL JX.

Formal analysis: XL BW.

Funding acquisition: TY.

Investigation: BW TY JX XL.

Methodology: TY DZ ZN.

Project administration: TY.

Resources: TY DZ.

Supervision: TY.

Validation: TY.

Writing – original draft: XL TY.

Writing – review & editing: ZN TY DZ.

References

1. Pote DH, Daniel TC, Sharpley AN, Moore PA, Edwards DRJ, Nichols DJ. Relating extractable soil phos-

phorus to phosphorus losses in runoff. Soil Sci. Soc. Am. J. 1996; 60: 855–859.

2. Chen X, Fan XH, Li D. Phosphorus forms in surface runoff and its affecting factors in hilly upland. China

Environ. Sci. 2000; 20: 284–288.

Soil P fractions that are associated with P loss from surface runoff

PLOS ONE | https://doi.org/10.1371/journal.pone.0179275 June 26, 2017 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179275.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0179275.s004
https://doi.org/10.1371/journal.pone.0179275


3. Dougherty WJ, Mason SD, Burkitt LL, Milham PJ. Relationship between phosphorus concentration in

surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall. Soil Res.

2011; 49: 523–528.

4. Sharpley AN, Chapra SCR, Wedepohl R, Sims JT, Daniel TC, Reddy KR. Managing agricultural phos-

phorus for protection of surface waters: issues and options. J. Environ. Qual. 1994; 23: 427–451.

5. Yu S, He ZL, Stoffella PJ, Calvert DV, Yang XE, Banks DJ, et al. Surface runoff phosphorus (P) loss in

relation to phosphatase activity and soil P fractions in Florida sandy soils under citrus production. Soil

Biol. Biochem. 2006; 38: 619–628.

6. Pote DH, Daniel TC, Nichols DJ, Sharpley AN, Miller DM, Edwards DR. Relationship between phospho-

rus levels in three Ultisols and phosphorus concentrations in runoff. J. Environ. Qual. 1999; 28: 170–175.

7. McDowell RW, Monaghan RM, Morton J. Soil phosphorus concentrations to minimise potential P loss

to surface waters in Southland. New Zeal. J. Agr. Res. 2003; 46: 239–253.

8. McDowell RW, Condron LM. Estimating phosphorus loss from New Zealand grassland soils. New Zeal.

J. Agr. Res. 2004; 47: 137–145.

9. Moody PW. Environmental risk indicators for soil phosphorus status. Soil Res. 2011; 49: 247–252.

10. Sharpley AN, McDowell RW, Kleinman PJA. Phosphorus loss from land to water: integrating agricultural

and environmental management. Plant Soil 2001; 237: 287–307.

11. Jalali M, Matin NH. Soil phosphorus forms and their variations in selected paddy soils of Iran. Environ.

Monit. Assess. 2013; 185: 8557–8565. https://doi.org/10.1007/s10661-013-3195-2 PMID: 23616078

12. Reddy KR, Wang Y, DeBusk WF, Fisher MM, Newman S. Forms of soil phosphorus in selected hydro-

logic units of the Florida Everglades. Soil Sci. Soc. Am. J. 1998; 62: 1134–1147.

13. Chang SC, Jackson ML. Fractionation of soil phosphorous in soils. Soil Sci. 1957; 84: 1334–1447.

14. Hedley MJ, Stewart JWB, Chauhan BS. Changes in inorganic and organic soil phosphorus fractions

induced by cultivation practices and by laboratory incubation. Soil Sci. Soc. Am. J. 1982; 46: 970–975.

15. Gu YC, Qin SW. Phosphorus accumulation, transformation and availability under long-term application

of phosphorus fertilizer. Soils 1997; 29: 13–17.

16. Wang J, Liu WZ, Mu HF, Dang TH. Inorganic phosphorus fractions and phosphorus availability in a cal-

careous soil receiving 21-year superphosphate application. Pedosphere 2010; 20: 304–310.

17. Shen J, Li R, Zhang F, Fan J, Tang C, Rengel Z. Crop yields, soil fertility and phosphorus fractions in

response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops

Res. 2004; 86: 225–238.

18. Sui Y, Thompson ML, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids. Soil

Sci. Soc. Am. J. 1999; 63: 1174–1180.

19. Lei HJ, Liu X, Zhu DW. Development of a new phosphorus fractionation scheme in acid soil and biologi-

cal evaluation. Acta Pedologica Sin. 2007; 44: 860–866.

20. Gu YC, Jiang BF. Methods of determination of inorganic phosphorus fractionation in calcareous soil.

Soils 1990; 22: 101–102, 110.

21. Samadi A, Gilkes RJ. Forms of phosphorus in virgin and fertilised calcareous soils of Western Australia.

Aust. J. Soil Res. 1998; 36: 585–602.

22. Buehler S, Oberson A, Rao IM, Friesen DK, Frossard E. Division S-4 soil fertility and plant nutrition-

sequential phosphorus extraction of a 33P-labeled oxisol under contrasting agricultural systems. Soil

Sci. Soc. Am. J. 2002; 66: 868–877.

23. Ai Y, Bi Y, Hu Z, Zhang Q, Yu B, Zhang Q. Relationship between water environment and agricultural

non-point pollution in Danjiangkou reservoir. In: Liu B, Zhao T, editors. Progresses in Comprehensive

Prevention and Control Technology for Agricultural Non-Point Source Pollution. Beijing: Agricultural

Science and Technology Press of China; 2010. pp. 46–53.

24. Cheng LQ, Zhu TQ. Water environmental assessment for the Danjiangkou reservoir. Res. Soil Water

Conserv. 2008; 15: 202–204, 208.

25. Li C, Yang T, Xu J, Ba R, Xiong G, Chen F, et al. Crop productivity and comparison of farmland nutrient

loss in different crop patterns on slope land in Danjiangkou Reservoir area. J. Soil Water Conserv.

2011; 25: 83–87.

26. Bao SD. Analysis of Soil and Agricultural Chemistry. Beijing: Chinese Agriculture Press; 2000. pp.

25–147.

27. SEPA. Technical Specifications Requirements for Monitoring of Surface Water and Waste Water. Bei-

jing: China Environmental Science Press; 2003.

28. Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural

waters. Anal. Chim. Acta 1962; 27: 31–36.

Soil P fractions that are associated with P loss from surface runoff

PLOS ONE | https://doi.org/10.1371/journal.pone.0179275 June 26, 2017 15 / 16

https://doi.org/10.1007/s10661-013-3195-2
http://www.ncbi.nlm.nih.gov/pubmed/23616078
https://doi.org/10.1371/journal.pone.0179275


29. Sheng HJ, Xia XY, Yang LQ, Zhao HT, Luan SR, Feng K. Effects of phosphorus application on soil

available P and different P form in runoff. Acta Ecol. Sin. 2004; 24: 2837–2840.

30. Olsen SR, Cole CV, Watanable FS, Dean LA. Estimation of Available Phosphorus in Soils by Extraction

with Sodium Bicarbonate. Washington: US Department of Agriculture; 1954.

31. Greenhill NB, Peverill KI, Douglas LA. Nutrient concentrations in runoff from pasture in Westernport,

Victoria. Soil Res. 1983; 21: 139–145.

32. Kirkby MJ, Imeson AC, Bergkamp G, Cammeraat LH. Scaling up processes and models from the field

plot to the watershed and regional areas. J. Soil Water Conserv. 1996; 51: 391–396.

33. Pan CZ, Shangguan ZP, Lei TW. Influences of grass and moss on runoff and sediment yield on sloped

loess surfaces under simulated rainfall. Hydrol. Process. 2006; 331: 178–185.

34. Doody D, Moles R, Tunney H, Kurz I, Bourke D, Daly K, et al. Impact of flow path length and flow rate on

phosphorus loss in simulated overland flow from a humic gleysol grassland soil. Sci. Total Environ.

2006; 372: 247–255. https://doi.org/10.1016/j.scitotenv.2006.08.029 PMID: 17095051

35. Douglas CL, King KA, Zuzel JF. Nitrogen and phosphorus in surface runoff and sediment from a wheat-

pea rotation in northeastern Oregon. J. Environ. Qual. 1998; 27: 1170–1177.

36. Ng Kee Kwong NF, Bholah A, Volcy L, Pynee K. Nitrogen and phosphorus transport by surface runoff

from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. Agr. Ecosyst.

Environ. 2002; 91: 147–157

37. Gao Y, Zhu B, Wang T, Miao CY, Tang JL, Zhou P. Purple soil sloping land bio-available phosphorus

transported out under the condition of artificial simulated rainfall. China Environ. Sci. 2008; 28: 313–318.

38. Xiang WC, Huang M, Li XH. Progress on fractioning of soil phosphorus and availability of various phos-

phorus fractions to crops in soil. Plant Nutr. Fert. Sci. 2004; 10: 663–670.

39. Leytem AB, Turner BL, Raboy V, Peterson KL. Linking manure properties to phosphorus solubility in

calcareous soils: importance of the manure carbon to phosphorus ratio. Soil Sci. Soc. Am. J. 2005; 69:

1516–1524.

40. Pagliari PH, Laboski CAM. Dairy manure treatment effects on manure phosphorus fractionation and

changes in soil test phosphorus. Biol. Fert. Soils 2013; 49: 987–999.

41. Nash D, Halliwell D, Cox J. Hydrological mobilisation of pollutants at the field/slope scale. In: Haygarth

PM, Jarvis SC, editors. Agriculture, Hydrology and Water Quality. London: CABI; 2002. pp. 225–242.

42. Gao Y, Zhu B, Zhou P, Tang JL, Wang T, Miao CY. Effects of vegetation cover on phosphorus loss from

a hillslope cropland of purple soil under simulated rainfall: a case study in China. Nutr. Cycl. Agroe-

cosys. 2009; 85: 263–273.

43. Mamo M, Bubenzer GD. Detachment rate, soil erodibility and soil strength as influenced by plant roots:

Part 1. Laboratory study. T. ASABE 2001a; 44: 1167–1174.

44. Mamo M, Bubenzer GD. Detachment rate, soil erodibility and soil strength as influenced by plant roots:

Part 2. Field study. T. ASABE 2001b; 44: 1175–1181.

45. Márquez CO, Garcia VJ, Cambardella CA, Schultz RC, Lsenhart-Isenhart TM. Aggregate-size stability

distribution and soil stability. Soil Sci. Soc. Am. J. 2004; 68: 725–735.

46. Joseph L, Pikul J, Kristian JA. Water infiltration and storage affected by subsoiling and subsequent till-

age. Soil Sci. Soc. Am. J. 2003; 67: 859–867.

47. Shigaki F, Sharpley AN, Prochnow LI. Source-related transport of phosphorus in surface runoff. J. Envi-

ron. Qual. 2006; 35: 2229–2235. https://doi.org/10.2134/jeq2006.0112 PMID: 17071893

48. Robertson FA, Nash DM. Phosphorus and nitrogen in soil, plants, and overland flow from sheep-grazed

pastures fertilized with different rates of superphosphate. Agr. Ecosyst. Environ. 2008; 126: 195–208.

49. Liu JL, Li RG, Zhang FS. The transformation of applied phosphorus and availability of residual P in

wheat-maize rotation. Plant Nutr. Fert. Sci. 1999; 5: 14–20.

50. Yu SF, Yang L, Jiang QG, Ma XH, Sun M. Forms, transformation and bioavailability of inorganic phos-

phorus in calcareous alluvial and cinnamon soil of Shandong. Chin. J. Soil Sci. 2003; 34: 422–426.

51. Casermeiro MA, Molina JA, De-la-Cruz-Caravaca MT, Hernando-Costa J, Hernando-Massanet MI,

Moreno PS. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate. Catena

2004; 57: 91–107.

52. McDowell R, Sharpley AN. Phosphorus transport in overland flow in response to position of manure

application. J. Environ. Qual. 2002; 31: 217–227. PMID: 11837425

53. Do Nascimento CAC, Pagliari PH, Schmitt D, He Z, Waldrip H. Phosphorus concentrations in sequen-

tially practionated soil samples as affected by digestion methods. Sci. Rep. 2015; 5: 17967 https://doi.

org/10.1038/srep17967 PMID: 26647644

Soil P fractions that are associated with P loss from surface runoff

PLOS ONE | https://doi.org/10.1371/journal.pone.0179275 June 26, 2017 16 / 16

https://doi.org/10.1016/j.scitotenv.2006.08.029
http://www.ncbi.nlm.nih.gov/pubmed/17095051
https://doi.org/10.2134/jeq2006.0112
http://www.ncbi.nlm.nih.gov/pubmed/17071893
http://www.ncbi.nlm.nih.gov/pubmed/11837425
https://doi.org/10.1038/srep17967
https://doi.org/10.1038/srep17967
http://www.ncbi.nlm.nih.gov/pubmed/26647644
https://doi.org/10.1371/journal.pone.0179275

