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Abstract

The oriental army worm Mythimna separata (Lepidoptera: Noctuidae) is a migra-
tory pest in Eastern Asia and China. Seasonal high temperatures in Southern China
and low temperatures in Northern China are pressures favouring the annual
migration of this species, while cold tolerance determines the northern limit of its
overwintering range. A number of physiological stress responses occur in insects
as a result of variations in temperature. One reaction to thermal stress is the gener-
ation of reactive oxygen species (ROS), which can be harmful by causing oxidative
damage. The time-related effects (durations of 1, 4 and 7 h) of thermal stress treat-
ments of M. separata at comparatively low (5, 10, 15 and 20°C) and high (30, 35, 40
and 45°C) temperatures on the activities of antioxidant enzymes, including super-
oxide dismutase (SOD), catalase (CAT), peroxidase (POX) and glutathione S-trans-
ferases (GSTs), and total antioxidant capacity (T-AOC) were determined. Thermal
stress resulted in significant elevation of the activities of SOD, CAT and GSTs, indi-
cating that these enzymes contribute to defence mechanisms counteracting oxidative
damage caused by an increase in ROS. However, at high-temperatures, POX and T-
AOCwere also found to contribute to scavenging ROS. Our results also indicate that
extreme temperatures lead to elevated ROS production in M. separata. The present
study confirms that thermal stress can be responsible for oxidative damage. To over-
come such stress, antioxidant enzymes play key roles in diminishing oxidative dam-
age in M. separata.
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Introduction

Temperature is the most critical environmental factor for
many organisms; it effects growth, reproduction, distribution
and abundance, by inducing numerous physiological re-
sponses (Angilletta et al., 2002; Parmesan, 2006; Jia et al.,
2011). The thermal stress response, which occurs in all living

organisms, is a standard reaction to above normal tempera-
tures (Kotak et al., 2007; Nguyen et al., 2013). Under thermal
stress, overproduction of reactive oxygen species (ROS) can
cause oxidative damage. In general, the production of ROS
and antioxidant processes are synchronized; however, the bal-
ance between these activities can be disrupted during periods
of environmental stress, leading to synthesis of additional ROS
(Joanisse & Storey, 1996; Lopez-Martinez et al., 2008; Lalouette
et al., 2011). Overproduction of ROS can disrupt the fluidity of
cell membranes, due to lipid peroxidation, and lead to necro-
biosis, as well as alterations in cellular DNA (Green & Reed,
1998; Monaghan et al., 2009). A number of factors promote
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overproduction of ROS in insects, including compensatory
growth, ingested plant photo-oxidants and unfavourable en-
vironmental conditions (such as the presence of pollutants, ad-
verse temperatures or hypoxic stress) (Aucoin et al., 1995;
Zaman et al., 1995; Joanisse & Storey, 1998; Jing et al., 2005;
Mangel & Munch, 2005).

To prevent ROS damage, living organisms have developed
complex defence mechanisms for handling ROS, which include
both enzymes andmolecular antioxidants (Howe& Schilmiller,
2002). Anti-oxidative enzymes are the key to removal of ROS
from biological systems. The primary anti-oxidative enzymes
in insects are superoxide dismutase (SOD), catalase (CAT), per-
oxidase (POX) and glutathione-S-transferases (GSTs) (Felton &
Summers, 1995; Wang et al., 2001; Dubovskiy et al., 2008). SOD
catalyses the disputation of superoxide radicals into oxygen
andH2O2, whereas bothCAT and POX catalyse the disputation
of H2O2 into oxygen and water. Another important enzyme,
GST, eliminates lipid peroxidation products (hydroperoxides)
from cells (Dubovskiy et al., 2008;Meng et al., 2009). In addition,
the abilityof all antioxidants inanorganismtocounteroxidation
is described as the total antioxidant capacity (T-AOC) (Ghiselli
et al., 2000).

The oriental army worm Mythimna separata (Lepidoptera:
Noctuidae) is a migratory pest in Eastern Asia and China
(Ruilo & Ziangshi, 1987; Rui-Lu et al., 1989; Chen et al.,

1995). It has been responsible for damaging millet
(Pennisetum spp.) and wheat (Triticum spp.) crops for thou-
sands of years in China. Recently, it has also been found to
damage rice and corn crops (Chen & Hu, 2000; Wang et al.,
2006). Seasonal migration of M. separata has been observed
in China. The organism is mainly present in Southern and
Central China and its population is well controlled by redu-
cing the cultivation area of host plants in these regions, al-
though it can survive and reproduce in some southern
regions during winter. However, crops in several areas of
Northern China, where the insect is unable to survive over
winter, are still continuously damaged (Jiang, 2004; Zhang
et al., 2006). Seasonal high temperatures in Southern China
and low temperatures in Northern China are one of the
pressures favouring the annual migration of M. separata be-
tween these areas as an adaptive life history strategy (Jiang
et al., 2000). Conversely, the cold tolerance of this species de-
termines the northern limit of its overwintering range in
China. Zhang et al. (2008) revealed that cold stress (5°C) ex-
perienced during the first 24 h after eclosion can change mi-
grant M. separata into resident insects. Jiang et al. (2011)
reported that, for adults of M. separata, flight occurred at
temperatures between 11 and 32°C, with an optimum
range of 17–22C, and a lower threshold of 8°C. Warmer tem-
peratures generally have a positive effect on developmental

Fig. 1. Effects of treatment ofM. separata adultswith thermal stress for various lengths of time on CAT activity. Data collected after treatment
durations of 1, 4 and 7 h are presented in (a), (b) and (c), respectively. Data are presented as means (±SE) of three replicate experiments.
Letters above bars indicate significant differences (P < 0.05) determined by ANOVA with Tukey’s test.
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time, lifespan, adult flight activity and reproduction of M.
separata (Jiang & Luo, 1997; Xinfu et al., 1998); however,
very high temperatures can have the opposite effect, and
suppress adult reproduction to a greater extent than they
promote migratory flight (Jiang et al., 2000). To facilitate
growth and reproduction, animals search for balanced
sources of nutrition, mates and oviposition sites. This kind
of searching behaviour has costs that are offset by the ben-
efits gained from the resource (Crespo et al., 2014). M. separ-
ata encounters thermal fluctuations during its life cycle. The
cost to the adults of extreme temperatures (both low and
high) is much higher than that of migratory flight. To
date, the effects of thermal stress on M. separata have not
been reported. The aim of the present study was to deter-
mine how variations in temperature affect anti-oxidant en-
zyme activities in response to oxidative stress as such
changes may lead M. separata to migrate in order to survive
in different seasons.

Materials and methods

Insects

Insects for experimentation were collected from the
Key Laboratory of Insect Resources Utilization and

Sustainable Pest Management, Huazhong Agricultural
University, Wuhan. M. separata were reared at room tem-
perature (25 ± 2°C), 60 ± 10% relative humidity, and with
14:10 h light:dark cycles. An artificial diet was used to feed
the larvae as described in Chun (1981).

Thermal stress

Three-day-old adults were selected for the experiment. Five
adults were transferred into 100 ml plastic containers for each
treatment. Insects underwent temperature treatments, at 5, 10,
15, 20, 30, 35, 40 and 45°C, for 1, 4 and 7 h. For all stress treat-
ments, a programmable thermal controller (Ningbo Southeast
Instrument, RXZ-260B, China) was used. A temperature of 25°
C was set as the control for this experiment. Adult insects were
frozen in liquid nitrogen immediately after temperature treat-
ment and stored at −80°C until further analysis. Experiments
were performed three times on three different days.

Enzyme extraction

A commercially available assay kit (Nanjing Jiancheng
Bioengineering Institute, China) was used for extraction of en-
zymes, according to the manufacturer’s instructions. Samples

Fig. 2. Effects of treatment ofM. separata adultswith thermal stress for various lengths of time on SOD activity. Data collected after treatment
durations of 1, 4 and 7 h are presented in (a), (b) and (c), respectively. Data are presented as means (±SE) of three replicate experiments.
Letters above bars indicate significant differences (P < 0.05) determined by ANOVA with Tukey’s test.
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were homogenized in 0.9% saline solution at a ratio of 1:9
(Wflies:Vnormal saline). Homogenates were centrifuged at
10,000 g for 15 min at 4°C. After centrifugation, the super-
natant was stored at low temperature until tested to determine
enzyme activity. The method of Bradford (1976) was used to
calculate protein concentrations.

Measurement of T-AOC

T-AOCwasmeasuredusing an assay kit (Nanjing Jiancheng
Bioengineering Institute) according to the manufacturer’s in-
structions. The kit is based on the ability of antioxidant sub-
stances present in the supernatant to reduce a pool of ferric
iron. This acts as a redox-linked, reductant colorimetric assay,
as a relatively stable complex is formed between Fe2+ and por-
phyrin, which absorbs light at 520 nm. The required quantity of
protein to elevate the absorbance measurement by 0.01 nm
min−1 mg−1 protein was defined as one unit of T-AOC.

Determination of antioxidant enzyme activities

Spectrophotometry was used to determine the activities of
enzymes (SOD, CAT, POX and GST) using assay kits (Nanjing

Jiancheng Bioengineering Institute), in accordance with the in-
structions of the manufacturer.

CAT activity was calculated by gauging the decline in
absorbance at 405 nm in response to decomposition of H2O2.
The amount of enzyme required for decomposition of H2O2

per second per mg of protein was defined as one unit
of CAT activity. The unit of expression for CAT activity was
U mg−1 protein.

The xanthine oxidase method was used to determine SOD
activity at 450 nm. The quantity of enzyme required for 50%
inhibition of the xanthine–xanthine oxidase reaction in a pro-
tein concentration of 1 mg ml−1 was defined as one unit of
SOD activity, expressed as U mg−1 protein.

POX activity was measured at 420 nm by the activation of
oxidation in the presence of H2O2. The quantity of POX en-
zyme required to catalyse 1 µg substrate min−1 mg−1 of pro-
tein was defined as one unit of POX activity, and expressed
as U mg−1 protein.

The substrate, 1-chloro-2,4-dinitrobenzene (CDNB) was
used to determine the activity of GST. A change in absorbance
at 412 nm was observed due to the formation of GSH–CDNB.
The amount of GST enzyme required to activate the fusion of
1 µmol l−1 GSH with CDNB min−1 mg−1 protein was

Fig. 3. Effects of treatment ofM. separata adultswith thermal stress for various lengths of time on POX activity. Data collected after treatment
durations of 1, 4 and 7 h are presented in (a), (b) and (c), respectively. Data are presented as means (±SE) of three replicate experiments.
Letters above bars indicate significant differences (P < 0.05) determined by ANOVA with Tukey’s test.
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defined as one unit of GST activity and expressed as U mg−1

protein.

Statistical analysis

Treatment effects (temperature and duration) were sub-
jected to one or two-way analysis of variance (ANOVA)
using the general linear model procedure in SPSS 16.0 (SPSS,
Chicago, IL, USA); when significant effects were identified,
mean differences were separated by Tukey’s test, with
P < 0.05 considered statistically significant.

Results

At 45°C, all adults died, regardless of the duration of the
thermal stress treatment.

Antioxidant enzymes

CAT activity in M. separata adults was significantly in-
creased at both low and high, compared with the control, tem-
peratures (P < 0.01), after treatment for all durations (P < 0.01),
and the interaction between temperature and duration was
significant (P < 0.01). Maximum CAT activity values were
167.67, 146.94 and 135.50 U mg−1 protein recorded under
cold stress (5°C) for 1, 4 and 7 h, respectively (fig 1).

SOD activity was significantly raised at both low and high,
compared with the control, temperatures inM. separata adults
(P < 0.01), for all durations of treatment (P < 0.01), and there
was a significant interaction between temperature and dur-
ation (P < 0.01). The highest SOD activity levels (53.92, 67.41
and 69.45 U mg−1 protein) were observed under cold stress
(5°C) for 1, 4 and 7 h, respectively (fig 2).

POX activity inM. separata adults was also significantly af-
fected at all temperatures (P < 0.01) and for all durations
(P < 0.01), and temperature and duration interacted signifi-
cantly (P < 0.01). POX activity increased significantly under
high-temperature stress (temperatures ranging from 30 to
40°C) at 1 and 4 h, relative to cold stress and control (25°C)
conditions; however, after 7 h, while a significant elevation
in POX activity was observed at temperatures of 15, 20, 30,
35 and 40°C, relative to that at 10°C, no significant differences
were observed at either low or high temperatures compared
with the control group (25°C) (fig 3).

Significant increases in GST activity inM. separata adults at
both low and high temperatures were observed at all tempera-
tures (P < 0.01) and durations (P < 0.01), compared with con-
trols (25°C), and there was a significant interaction between
temperature and durations (P < 0.01). The highest values of
GST activity recorded were 649.71 and 572.50 U mg−1 protein
at 5°C for 1 and 4 h, respectively. In addition, after 7 h at 30°C
GST activity was 633.15 U mg−1 protein (fig 4).

Fig. 4. Effects of treatment ofM. separata adults with thermal stress for various lengths of time onGST activity. Data collected after treatment
durations of 1, 4 and 7 h are presented in (a), (b) and (c), respectively. Data are presented as means (±SE) of three replicate experiments.
Letters above bars indicate significant differences (P < 0.05) determined by ANOVA with Tukey’s test.
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Total antioxidant capacity (T-AOC)

Significant effects were observed on the T-AOCofM. separ-
ata adults, relative to the control group, under both low- and
high-temperature stresses (P < 0.01). The duration of treatment
did not result in a significant change in T-AOC (P < 0.31); how-
ever, a significant interaction between temperature and dur-
ation was observed (P < 0.01). Heat stress (temperatures
ranging from 30 to 40°C) resulted in a significant increase in
T-AOC after 1 h, relative to cold stress and control tempera-
ture; however, after 4 h of treatment only temperature stress
treatment at 40°C resulted in significantly increased T-AOC
compared with controls (25°C). No significant changes were
observed compared with controls when adults were exposed
to low- and high-temperature stresses for 7 h (fig 5).

Discussion

Temperature is a critical environmental variable that en-
genders physiological changes in organisms (Jia et al., 2011).
M. separata adults were exposed to different thermal stresses,
at both low and high temperatures, and consequent physio-
logical oxidative stress responses explored. The effect of differ-
ent thermal stress conditions on the activities of the
antioxidant enzymes, SOD, CAT, POX, GST and on T-AOC,
in M. separata adults was examined. CAT, SOD, POX and

GST are key antioxidant defence enzymes, which work in a
synchronized manner to thwart oxidative stress caused by
high concentrations of ROS within cells. Among these antioxi-
dant enzymes, CAT is considered to be the principle H2O2

scavenging enzyme in arthropods (Jena et al., 2013), as
selenium-dependent glutathione POX (the main catalyser in
other organisms) is deficient (Sohal et al., 1990). However,
CAT is ineffective for the removal of low concentrations of
H2O2, as it functions only in the presence of high cellular con-
centrations (Ahmad et al., 1991). Under thermal stress, CAT ac-
tivity in citrus red mites is insufficient (Yang et al., 2010);
however, in the present study, a significant elevation of CAT
activity was observed at both low and high temperatures inM.
separata adults, compared with controls. These data suggest
that overexpression of CAT enhances the removal of H2O2 at
both low and high temperatures, and prevents oxidative stress
damage. Similar results were reported by Jia et al. (2011), and
Nabizadeh & Kumar (2011), in the oriental fruit fly, Bactrocera
dorsalis and the silkworm, Bombyx mori.

SOD plays a critical role in reducing high levels of super-
oxide radicals induced by exposure to low and high tempera-
tures (Celino et al., 2011). In the present study, significant
enhancement of SOD activity was determined under condi-
tions of thermal stress, compared with controls at 25°C, sug-
gesting that SOD production was induced as a result of
temperature fluctuations to protect M. separata adults from

Fig. 5. Effects of treatment ofM. separata adults with thermal stress for various lengths of time on total antioxidant capacity. Data collected
after treatment durations of 1, 4 and 7 h are presented in (a), (b) and (c), respectively. Data are presented as means (±SE) of three replicate
experiments. Letters above bars indicate significant differences (P < 0.05) determined by ANOVA with Tukey’s test.
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thermal stress. Similar results were reported by McCord &
Fridovich (1969) and Jia et al. (2011). SOD andCAT can directly
remove excess ROS in a coordinated manner. SOD removes
O2

− through the process of dismutation to O2 and H2O2, and
H2O2 is then sequentially reduced to H2O and O2 by CAT
(Kashiwagi et al., 1997). The observed higher levels of CAT,
relative to those of SOD, in this study indicate that, under ther-
mal stress, H2O2 is also synthesized by processes other than
SOD activity.

GSTs can metabolize lipid peroxidation products together
with POX, which also breaks down H2O2 (Jia et al., 2011). In
the present study, POX activity increased significantly at
high temperatures (ranging from 30 to 40°C) for 1 and 4 h,
compared with controls. Similar findings were reported by
Zhang et al. (2014) in the predatory mite, Neoseiulus cucumeris.
Our results demonstrate that POX activity was expeditiously
induced by thermal stress in M. separata adults, which is con-
sistent with the findings of a similar study involving
Helicoverpa armigera (Meng et al., 2009). However, after the
longest duration (7 h) of thermal stress, a significant decrease
in POX activity was observed in the oriental fruit fly B. dorsalis
(Jia et al., 2011) and predatory mite, N. cucumeris (Zhang et al.,
2014). In contrast, our results indicate no significant changes in
POX activity at either low or high temperatures compared
with the control temperature after the longest treatment dur-
ation (7 h), similar to the results reported by Yang et al.
(2010). The elevation of POX activity at higher temperatures
indicates that it was stimulated by scavenging ROS in M.
separata.

GSTs are a group of multifunctional dimeric enzymes,
which catalyse the conjugation of glutathione to a broad spec-
trum of endogenous and xenobiotic compounds for detoxifi-
cation, protection from oxidative damage, isomerization and
intercellular transportation (Board & Menon, 2013). These en-
zymes are involved in the inactivation of toxic lipid peroxida-
tion products created by oxidative stress damage. In the
present study, the observation of significantly elevated levels
of GST under temperature stress suggests that this enzyme
protects M. separata adults from oxidative damage under
these conditions. Similar antioxidant responses have been re-
ported in P. japonica (Zhang et al., 2015), A. mylitta (Jena et al.,
2013), B. dorsalis (Jia et al., 2011) and P. citri (Yang et al., 2010).

T-AOC is widely used as a tool to assess redox, and as a
representative measure of the total antioxidant capacity exist-
ing in an organism (Meng et al., 2009; Yang et al., 2010;
Sashidhara et al., 2011). T-AOC was augmented significantly
when M. separata adults were exposed to high temperatures
(ranging from 30 to 40°C) for 1 h and (40°C) for 4 h, compared
with controls. These data suggest that T-AOC adapts to deal
with oxidative stress and free radical formation and are con-
sistent with the results reported by Zhang et al. (2015),
Zhang et al. (2014) and Jia et al. (2011). However, no significant
difference was observed compared with controls after treat-
ment for the longest duration (7 h). A similar result was re-
ported by Jia et al. (2011) in B. dorsalis under thermal stress
conditions.

Antioxidant stress is well managed by antioxidant en-
zymes; however, some non-enzymatic substances, e.g. trehal-
ose (Mahmud et al., 2010) and vitamin E (a-tocopherol) (Kaur
et al., 2009) also contribute to this process. A recent study also
confirmed the involvement of heat shock proteins, along with
antioxidant enzymes, in the response to ROS damage (Rosa
et al., 2012). The increase of T-AOC only at high temperatures
indicates that M. separata uses not only antioxidant enzymes,

but also other defence mechanisms, to combat thermal stress
and enable survival of the organism (Jia et al., 2011).

Conclusion

Oxidative stress can be generatedwhen environmental fac-
tors disturb the balance of redox reactions within an organism.
In M. separata, thermal stress is the main candidate factor for
the induction of oxidative stress. In response to thermal stress,
antioxidant enzymes are upregulated as a defence mechanism
tomitigate potential cellular damage. The enzymes SOD, CAT
and GST undergo significant increases in activity in response
to thermal stress in M. separata, and may be involved in the
management of oxidative damage produced by ROS.
Indeed, there was an increased production of ROS at higher
temperatures; therefore, these fluctuations may reflect physio-
logical adaptations in M. separata related to its migration ha-
bits. However, at high temperatures, compared with lower
temperatures, POX activity and T-AOC have additional roles
in scavenging ROS.
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